SYLLABUS OF THE INTERNATIONAL CHEMISTRY OLYMPIAD

- **Level 1**: These topics are included in the overwhelming majority of secondary school chemistry programs and need not to be mentioned in the preparatory problems.
- Level 2: These topics are included in a substantial number of secondary school programs and maybe used without exemplification in the preparatory problems.
- **Level 3**: These topics are not included in the majority of secondary school programs and can only be used in the competition if examples are given in the preparatory problems.

1 INORGANIC CHEMISTRY

1.1 Electronic configuration of atoms and ions

1.1.1 1.1.2 1.1.3 1.1.4 1.1.5	main groups transition metals lanthanide and actinide metals Pauli exclusion principle Hund's rule		1 2 3 1
<u>1.2 Tre</u>	ends in the periodic table (main groups)		
1.2.1	electronegativity		1
1.2.2	electron affinity		2
1.2.3	first ionization energy		2
1.2.4	atomic size		1
1.2.5	ionic size		2
1.2.6	highest oxidation number	1	

1.3 Trends in physical properties (main groups)

1.3.1	melting point	1
1.3.2	boiling point	1
1.3.3	metal character	1
1.3.4	magnetic properties	2
1.3.5	thermal properties	3
1.3.6	law of Dulong and Petit	1
1.3.7	electrical conductivity	3

1.4 Structures

1.4.1	simple molecular structures	2
1.4.2	simple molecular structures with central atom exceeding octet rule	3
1.4.3	ionic crystal structures	3
1.4.4	metal structures	3
1.4.5	stereochemistry	3

1.5 Nomenclature

1
1
1
2
3

1.6 Chemical calculations

1.6.1	balancing equations	1
1.6.2	stoichiometric calculations	1
1.6.3	mass and volume relations	1
1.6.4	empirical formula	1
1.6.5	Avogadro's number	1
1.6.6	concentration calculations	1

1.7 Isotopes

1.7.1	counting of nucleons	1
1.7.2	radioactive decay	1
1.7.3	nuclear reactions (alpha, beta, gamma, neutrino)	2

1.8 Natural cycles

1.8.1	nitrogen	2
1.8.2	oxygen	2
1.8.3	carbon	2

1.9 s-Block

1.9.1	Products of reactions of group I and II metals	
1.9.1.1	with water, basicity of the products	1
1.9.1.2	with halogens	1
1.9.1.3	with oxygen	2
1.9.2	heavier s-block elements are more reactive	1
1.9.3	lithium combines with H_2 and N_2 forming LiH and Li ₃ N	2

1.10 p-Block

1.10.1	stoichiometry of simplest non-metal hydrides	1
1.10.2	properties of metal hydrides	3
1.10.3	acid-base properties of CH_4 , NH_3 , H_2O , H_2S , and hydrogen halides HX	1
1.10.4	NO reacts with O_2 to form NO_2 ,	1
1.10.5	equilibrium between NO ₂ and N ₂ O ₄	1
1.10.6	products of reaction of NO ₂ with water	1
1.10.7	HNO ₂ and its salts are reductants 1	

1.10.8 HNO_3 and its salts are oxidants	1
1.10.9 N_2H_4 is a liquid and reductant	3
1.10.10 there exist acids like $H_2N_2O_2$, HN_3	3
1.10.11 reactions of HNO ₃ with different metals and r	eductants 3
1.10.12 reaction of $Na_2S_2O_3$ with iodine	2
1.10.13 other thioacids, polyacids, peroxoacids	3
1.10.14 B(III), AI(III), Si(IV), P(V), S(IV), S(VI), O(-II),	F(-I),
CI(-I), CI(I), CI(III), CI(V), CI(VII) are normal o	xidation states
of 2nd and 3rd row elements in compounds v	vith halogens and in oxoanions 1
1.10.15 compounds of non-metals with other oxidation	n states 3
1.10.16 the preferred oxidation states are Sn(II), Pb(I	I) and Bi(III) 2
1.10.17 products of reactions of non-metal oxides wit	h water and
stoichiometry of resulting acids	1
1.10.18 reactions of halogens with water	2
1.10.19 reactivity and oxidizing power of halogens de	ecrease from F_2 to I_2 1
1.10.20 differences of chemistry between row 4 and	row 3 elements 3

1.11 d-Block

1.11.1	common oxidation states of the common d-block metals are	
	Cr(III), Cr(VI), Mn(II), Mn(IV), Mn(VII), Fe(II), Fe(III), Co(II),	
	Ni(II), Cu(I), Cu(II), Ag(I), Zn(II), Hg(I), and Hg(II)	1
1.11.2	colours of the listed common ions in aqueous solutions	2
1.11.3	other oxidation states and chemistry of other d-block elements	3
1.11.4	Cr, Mn, Fe, Co, Ni, Zn dissolve in dilute HCl; Cu, Ag, Hg do not dissolve	1
1.11.5	products of dissolution are (2+) cations	2
1.11.6	passivation of Cr, Fe (and also Al)	2
1.11.7	$Cr(OH)_3$ and $Zn(OH)_2$ are amphoteric, other common hydroxides are not	1
1.11.8	MnO_4^{-} , CrO_4^{-2} , $Cr_2O_7^{-2}$ are strong oxidants	1
1.11.9	products of reduction of MnO ₄ ⁻ depending on pH	2
1.11.10	polyaions other than $Cr_2O_7^{2-}$	3

1.12 Other inorganic problems

1.12.1	industrial production of H ₂ SO ₄ , NH ₃ , Na ₂ CO ₃ , Na, Cl ₂ , NaOH,	1
1.12.2	chemistry of lanthanides and actinides	3
1.12.3	chemistry of noble gases	3

2. PHYSICAL CHEMISTRY

2.1 Chemical equilibria

2.1.1	dynamical model of chemical equilibrium	1
2.1.2	chemical equilibria expressed in terms of relative concentrations	1
2.1.3	chemical equilibria expressed in terms of partial pressures	2
2.1.4	the relationship between equilibrium constants for ideal gases	
	expressed in different ways (concentration, pressure, mole fraction)	3
2.1.5	relation of equilibrium constant and standard Gibbs energy	3

2.2 Ionic equilibria

2.2.1	Arrhenius theory of acids and bases	1
2.2.2	Broensted-Lowry theory, conjugated acids and bases	1

2.2.3	definition of pH	1
2.2.4	ionic product of water	1
2.2.5	relation between K _a and K _b for conjugated acids and bases	1
2.2.6	hydrolysis of salts	1
2.2.7	solubility product - definition	1
2.2.8	calculation of solubility (in water) from solubility product	1
2.2.9	calculation of pH for weak acid from K _a	1
2.2.10	calculation of pH for 10 ⁻⁷ mol dm ⁻³ HCl solution	2
2.2.11	calculation of pH for multiprotic acids	2
2.2.12	calculation of pH for weak acid mixtures	3
2.2.13	definition of activity coefficient	2
2.2.14	definition of ionic strength	3
2.2.15	Debye-Hückel formula	3

2.3 Electrode equilibria

2.3.1	electromotive force (definition)	1
2.3.2	first kind electrodes	1
2.3.3	standard electrode potential	1
2.3.4	Nernst equation	2
2.3.5	second kind electrodes	2
2.3.6	relation between ΔG and electromotive force	3

2.4 Kinetics of homogeneous reactions

2.4.1	factors influencing reaction rate	1
2.4.2	rate equation	1
2.4.3	rate constant	1
2.4.4	order of reactions	2
2.4.5	1st order reactions: time dependence of concentration	2
2.4.6	1st order reactions: half life	2
2.4.7	1st order reactions: relation between half-life and rate constant	2
2.4.8	rate-determining step	2
2.4.9	molecularity	2
2.4.10	Arrhenius equation, activation energy (definition)	2
2.4.11	calculation of rate constant for 1st order reaction	2
2.4.12	calculation of rate constant for second, third order reaction	3
2.4.13	calculation of activation energy from experimental data	3
2.4.14	basic concepts of collision theory	3 3 3 3
2.4.15	basic concepts of transition state theory	3
2.4.16	opposing, parallel and consecutive reactions	3

2.5 Thermodynamics (First law)

2.5.1	system and its surroundings	2
2.5.2	energy, heat and work	2
2.5.3	relation between enthalpy and energy	2
2.5.4	heat capacity - definition	2
2.5.5	difference between C_p and C_v (ideal gas only)	2
2.5.6	Hess law	2
2.5.7	Born-Haber cycle for ionic compounds	3
2.5.8	lattice energies - approximate calculations (e.g. Kapustinski equation)	3
2.5.9	use of standard formation enthalpies	2
2.5.10	heats of solution and solvation	2

2.6 Thermodynamics (Second law)

2.6.1	entropy, definition (q/T)	2
2.6.2	entropy and disorder	2
2.6.3	relation $S = k \ln W$	3
2.6.4	relation $\Delta G = \Delta H - T \Delta S$	2
2.6.5	ΔG and directionality of changes	2

2.7 Phase systems

ideal gas law	1
van der Waals gas law	3
definition of partial pressure	1
temperature dependence of the vapour pressure of liquid	2
Clausius-Clapeyron equation	3
reading phase diagrams: triple point	
phase diagrams: critical temperature	3
liquid-vapour system (diagram)	3
liquid-vapour: ideal and non-ideal systems	3
liquid-vapour: use in fractional distillation	3
Henry's law	
Raoult's law	2 2 3 2
deviations from Raoult's law	3
boiling point elevation law	2
freezing point depression, determination of molar mass	2
osmotic pressure	2
partition coefficient	2 3 3
solvent extraction	3
basic principles of chromatography	2
	van der Waals gas law definition of partial pressure temperature dependence of the vapour pressure of liquid Clausius-Clapeyron equation reading phase diagrams: triple point phase diagrams: critical temperature liquid-vapour system (diagram) liquid-vapour: ideal and non-ideal systems liquid-vapour: use in fractional distillation Henry's law Raoult's law deviations from Raoult's law boiling point elevation law freezing point depression, determination of molar mass osmotic pressure partition coefficient solvent extraction

3. ORGANIC CHEMISTRY

3.1 Alkanes

3.1.1 3.1.2 3.1.3	isomers of butane naming (IUPAC) trends in physical properties	1 1 1
3.1.4	substitution (e.g. with Cl_2)	
3.1.4.1	products	1
3.1.4.2	free radicals	2
3.1.4.3	initiation/termination of the chain reaction	2

3.2 Cycloalkanes

3.2.1	names	1
3.2.2	strain in small rings	2
3.2.3	chair/boat conformation	2

3.3 Alkenes

3.3.1 3.3.2	planarity E/Z (cis-trans) isomerism		1 1
3.3.3	Addition of Br ₂ and HBr		
3.3.3.1	products		1
3.3.3.2	Markovnikoff's rule		2
3.3.3.3	carbonium ions in addition reaction		3
3.3.3.4	relative stability of carbonium ions		3
3.3.3.5	1,4-addition to alkadiene	3	

3.4 Alkynes

3.4.1	linear geometry	1
3.4.2	acidity	2
3.4.3	differences in chemical properties between alkenes and alkynes	3

3.5 Arenes and heterocycles

formula of benzene	1
delocalization of electrons	1
stabilization by resonance	1
Hückel (4n + 2) rule	3
aromaticity of heterocycles	3
nomenclature of heterocycles (IUPAC)	3
polycyclic aromatic compounds	3
effect of first substituent on reactivity	2
effect of first substituent on direction of substitution	2
explanation of substituent effects	3
	delocalization of electrons stabilization by resonance Hückel (4n + 2) rule aromaticity of heterocycles nomenclature of heterocycles (IUPAC) polycyclic aromatic compounds effect of first substituent on reactivity effect of first substituent on direction of substitution

3.6 Halogen compounds

3.6.1	hydrolytic reactions		2
3.6.2	exchange of halogens		3
3.6.3	reactivity (primary vs secondary vs tertiary)		2
3.6.4	ionic mechanism of substitution		2
3.6.5	side products (elimination)		2
3.6.6	reactivity (aliphatic vs aromatic)		2
3.6.7	Wurtz (RX + Na) reaction	3	
3.6.8	halogen derivatives and pollution		3

3.7 Alcohols and phenols

3.7.1	hydrogen bonding - alcohols vs ethers	1
3.7.2	acidity of alcohols vs phenols	2
3.7.3	dehydration to alkenes	1
3.7.4	dehydration to ethers	2
3.7.5	esters with inorganic acids	2

3.7.6 3.7.7 3.7.8	iodoform reaction reactions of primary/secondary/tertiary: Lucas reagent formula of glycerin	2 2 1
<u>3.8 Carb</u>	onyl compounds	
3.8.1 3.8.2	nomenclature keto/enol tautomerism	1 2
3.8.3	Preparation of carbonyl compounds	
3.8.3.1	oxidation of alcohols	1
3.8.3.2	from carbon monoxide	3
3.8.4	Reaction of carbonyl compounds	
3.8.4.1	oxidation of aldehydes	1
3.8.4.2	reduction with Zn metal	2
3.8.4.3	addition of HCN	2
3.8.4.4	addition of NaHSO ₃	2
3.8.4.5	addition of NH ₂ OH	2
3.8.4.6	aldol condensation	2 2 2 2 3 2 3 2 3 2 2 2
3.8.4.7	preparation of acetates	2
3.8.4.8	Cannizzaro (PhCH ₂ OH disproportionation)	3
3.8.4.9	Grignard reaction	2
3.8.4.10	Fehling (Cu ₂ O) and Tollens (Ag mirror)	2
<u>3.10 Car</u>	boxylic acids	
3.10.1 3.10.2	inductive effect and strength equivalence of oxygen atoms in anions	2 2

3.10.3 Preparation and reactions of carboxylic acids

3.10.3.1	preparation from esters	2
3.10.3.2	preparation from nitriles	2
3.10.3.3	products of reaction with alcohols (esters)	1
3.10.3.4	mechanism of esterification	2
3.10.3.5	isotopes in mechanism elucidation	3
3.10.3.6	nomenclature of acid halides	2
3.10.3.7	preparation of acid chlorides	2
3.10.3.8	preparation of amides from acid chlorides	2
3.10.3.9	preparation of nitriles from acid chlorides	3
3.10.3.10	properties and preparation of anhydrides	2
3.10.3.11	oxalic acid, name and formula	1
3.10.3.12	multifunctional acids (e.g. hydroxyacids, ketoacids)	2
3.10.3.13	polycarboxylic acids	2
3.10.3.14	optical activity (e.g. lactic acid	2
3.10.3.15	R/S nomenclature	3
3.10.3.16	plant and animal fats, differences	2

3.11 Nitrogen compounds

3.11.1	basicity of amines	1
3.11.2	comparing aliphatic vs aromatic	2
3.11.3	names: primary, secondary, tertiary, quaternary amines	2
3.11.4	identification of primary/sec./tert./quaternary amines in laboratory	3

3.11.5	Preparation of amines		
3.11.5.1	from halogen compounds		2
3.11.5.2	from nitro compounds (e.g. PhNH ₂ from PhNO ₂)		3
3.11.5.3	from amides (Hoffmann)		3
3.11.6	mechanism of Hoffmann rearrangement in acidic/basic medium		3
3.11.7	basicity amines vs amides		2
3.11.8	diazotation products of aliphatic amines		3
3.11.9	diazotation products of aromatic amines		3
3.11.10	dyes: colour vs structure (chromophore groups)	3	
3.11.11	nitro compounds : aci/nitro tautomerism		3
3.11.12	Beckmann (oxime - amide) rearrangements		3

3.12 Some large molecules

hydrophilic/hydrophobic groups	2
micelle structure	3
preparation of soaps	1
products of polymerization of:	
- styrene	2
- ethene	1
- polyamides	3
- phenol + aldehydes	3
- polyuretanes	3
polymers cross linking	3
chain mechanism of polymer formation	2
rubber composition	3
	preparation of soaps products of polymerization of: - styrene - ethene - polyamides - phenol + aldehydes - polyuretanes polymers cross linking chain mechanism of polymer formation

4. **BIOCHEMISTRY**

4.1 Aminoacids and peptides

1
2
2
3
3
3
3
1

4.2 Proteins

4.2.1	primary structure of proteins	1
4.2.2	-S-S- bridges	3
4.2.3	sequence analysis	3
4.2.4	secondary structures	3
4.2.5	details of alpha-helix structure	3
4.2.6	tertiary structure	3
4.2.7	denaturation reaction by change of pH, temperature, metals, ethanol	2
4.2.8	quaternary structure	3
4.2.9	separation of proteins (molecule size and solubility)	3
4.2.10	metabolism of proteins (general)	3
4.2.11	proteolysis	3

4.2.12 4.2.13 4.2.14 4.2.15 4.3 Fatty	transamination four pathways of catabolism of amino acids decarboxylation of amino acids urea cycle (only results) <u>acids and fats</u>		3 3 3 3
4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.3.7 4.3.8	IUPAC names from C_4 to C_{18} trivial names of most important (ca. 5) fatty acids general metabolism of fats beta-oxidation of fatty acids (formulas and ATP balance) fatty acids and fats anabolism phosphoglycerides membranes active transport	2	2 3 3 3 3 3 3
<u>4.4 Enzy</u>	mes		
4.4.1 4.4.2	general properties, active centres nomenclature, kinetics, coenzymes, function of ATP, etc.	2	3
4.5 Sacc	<u>harides</u>		
4.5.1 4.5.2 4.5.3 4.5.4 4.5.5 4.5.6 4.5.7 4.5.8 4.5.9 4.5.10 4.5.11 4.5.12 4.5.13	glucose and fructose: - chain formulas - Fischer projections - Haworth formulas osazones maltose as reducing sugar difference between starch and cellulose difference between alpha- and beta-D glucose metabolism from starch to acetyl-CoA pathway to lactic acid or to ethanol; catabolism of glucose ATP balance for the above pathways photosynthesis (products only) light and dark reaction detailed Calvin cycle		2 2 3 3 2 2 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3 3 2 3 3
<u>4.6 Kreb</u>	s cycle and respiration chain		
4.6.1 4.6.2 4.6.3 4.6.4 4.6.5	formation of CO ₂ in the cycle (no details) intermediate compounds in the cycle formation of water and ATP (no details) FMN and cytochromes calculation of ATP amount for 1 mole of glucose		3 3 3 3 3
4.7 Nucle	eic acids and protein synthesis		
4.7.1 4.7.2 4.7.3 4.7.4 4.7.5 4.7.6	pyrimidine, purine nucleosides and nucleotides formulas of all pyrimidine and purine bases difference between ribose and 2-deoxyribose base combination CG and AT base combination CG and AT - (hydrogen bonding structure)		2 3 3 3 3 3 3

4.7.7	difference between DNA and RNA	3
4.7.8	difference between mRNA and tRNA	3
4.7.9	hydrolysis of nucleic acids	3
4.7.10	semiconservative replication of DNA	3
4.7.11	DNA-ligase	3
4.7.12	RNA synthesis (transcription) without details	3
4.7.13	reverse transcriptase	3
4.7.14	use of genetic code	3
4.7.15	start and stop codons	3
4.7.16	translation steps	3

4.8 Other biochemical problems

4.8.1	hormones, regulation	3
4.8.2	hormones, feedback	3
4.8.3	insulin, glucagon, adrenaline	3
4.8.4	mineral metabolism (no details)	3
4.8.5	ions in blood	3
4.8.6	buffers in blood	3
4.8.7	haemoglobin; function and skeleton	3
4.8.8	haemoglobin; diagram of oxygen absorption	3
4.8.9	steps in clotting the blood	3
4.8.10	antigens and antibodies	3
4.8.11	blood groups	3
4.8.12	acetyl choline, structure and functions	3

OTHER PROBLEMS

5. Analytical chemistry

5.1	choice of indicators for acidimetry	1
5.2	titration curve; pH (strong and weak acid)	2
5.3	EMF (redox titration)	2
5.4	calculation of pH of simple buffer solution	2
5.5	identification of Ag ⁺ , Ba ²⁺ , Cl ⁻ , SO ₄ ²⁻	1
5.6	identification of Al^{3+} , NO_2^- , NO_3^- , Bi^{3+}	2
5.7	identification of VO_3^- , CIO_3^- , Ti^{4+}	3
5.8	use of flame tests for identification of K, Ca a Sr	1
5.9	Beer-Lambert law	2

6. Complexes

6.1	writing down complexation reactions		1
6.2	definition of coordination number	1	
6.3	prediction of coordination number of complex ions and molecules		3
6.4	complex formation constants (definition)		2
6.5	E _g and T _{2g} terms: high and low spin octahedral complexes		3
6.6	calculation of solubility of AgCl in NH ₃ (from K _s and constants β)	3	
6.7	cis and trans forms		3

7. Theoretical chemistry

7.1	energy levels of hydrogen atom (formula)	2
7.2	square of the wave function and probability	3
7.3	understanding the simplest Schrödinger equation	3
7.4	n, I, m quantum numbers	2
7.5	shape of p-orbitals	2
7.6	d orbital stereoconfiguration	3
7.7	molecular orbital diagram: H ₂ molecule	2
7.8	molecular orbital diagram: N_2 and O_2 molecules	3
7.9	bond orders in O_2 , O_2^+ , O_2^-	3
7.10	unpaired electrons and paramagnetism	2
7.11	Hückel theory for aromatic compounds	3
7.12	Lewis acids and bases	2
7.13	hard and soft Lewis acids	3

8. Instrumental methods of determining structure

8.1 UV-VIS spectroscopy

8.1.1	identification of aromatic compound	3
8.1.2	identification of chromophore	3

8.2 Mass spectra

	recognition of:	
8.2.1	- molecular ion	3
8.2.2	- fragments with a help of a table	3
8.2.3	typical isotope distribution	3

8.3 Infrared spectra

8.3.1	interpretation using a table of group frequencies	3
8.3.2	recognition of hydrogen bonds	3
8.3.3	Raman spectroscopy	3

<u>8.4 NMR</u>

8.4.1	interpretation of simple spectrum (like ethanol)	3
8.4.2	spin-spin coupling	3
8.4.3	coupling constants	3
8.4.4	identification of o- and p- substituted benzene	3
8.4.5	¹³ C- NMR	3

<u>8.5 X-rays</u>

8.5.1 8.5.2	Bragg law electron density diagram	3
8.5.3	coordination number	3
8.5.4	unit cell	3
	structures:	
8.5.5	- of NaCl	3
8.5.6	- of CsCl	3
8.5.7	 close-packed (2 types) 	3
8.5.8	determining of the Avogadro constant from X-ray data	3

8.6 Polarimetry

8.6.1 calculation of specific rotation angle

3